

EXECUTION AS FIRST BLOCKCHAIN USECASE Problems with bitcoins long transaction times block size is too small -> scalability problem core developers have been usurped high electricity consumption for PoW confirmation high price volatility Eightning network tries to address long transaction time "Layer 2" payment protocol that relies on the blockchain bidirectional payment channels established between two participants Lightning network for payment path established between two participants blockchain as arbiter with unlimited off-blockchain transactions low cost, scalable, instant payments that are cross-blockchain atomic swaps

SMART C	CONT	RACT LA	NGUAGES (SCL)		BLOCKCHAIN TECHNOLOGY GROUP
	SCL	Blockchain Plateforms	Pros	Cons	
	Solidity	Ethereum [96], Quorum [73] ,Wanchain [91] Rootstock [49], Cardano [43], Qtum [2] Dfinity [104], Soil, Monax, Ubiq	1.Turing Complete 2. Enjoys probably the biggest community of developers. 3. Most supported smart contract platform	 Uses solidity, that is not as powerful as compared to today's languages such as C++, C, python, go etc Can prove to be costly if the contract is not written efficiently. 	
	Sophia	Acternity [33]	 Introduced new smart contract language and VMs for faster and safer code execution. Using State channels and efficient ways to execute contracts keep the transaction prices low. By providing a version of the EVM it is easy to migrate EVM contracts to Æternity 	Keeping track of an implicit stack is generally error-prone and arguably not suitable for a high-level developer-facing language.	
TAL	Serpent	Counterparty [33]	Real-time garbage collection: Squeak has a pretty fast generational scavenging collector, but Serpent does even better with a parallel mark-sweep garbage collector.	Being a low-level language, Serpent is not useful for building applications unless you have a hands-on experience.	
TECH	F*	Zen [89]	As the smart contract language is "Dependently Typed", thus it is less prone to errors and is expressive enough to use it for 'FormalVerification'	Multiple transactions involving the same smart contract may not be easily parallelised, and may have to be executed in series.	

SCL	Blockchain Plateforms	Pros	Cons
RHOLang	5 RChain [95]	1. Turing Complete 2. Smart contracts enjoy a number of industry-leading functions such as: Meta-programming , Reactive Data Streams, Pattern Matching. As a result, RChain contracts have programmability	Rholang falls short in not adopting any syntax provisions for integrating business rules and policies.
RIDEON	Waves [11]	1. Rideon is a non Turing-complete smart contracts that covers the majority of the common use cases. 2. It has functionality of muli-signature.	1. Halting Problem 2. Termination at cost-calculation stage
GoLang	HyperLedger [6] Fabric	Highly modular platform that allows you to have high control over its performance, scalability and security.	As the contracts are deployed on peers (nodes) rather than on network, one has to deploy the contract code on every node(endorsers) on the network
Plutus	Cardano [43]	Heavily focused on making it easier to provide guarantees that a smart contract behaves as designed without hidden vulnerabilities.	Like Ethereum, IELE will use gas to limit resource usage and prevent DoS attacks. This presents some challenges to formal verification that are considered " tricky.
Michelson	Tezos [29]	Unlike Solidity, Michelson is not compiled to anything; it is a low level, stack-based, Turing-complete programming language that is directly interpreted by the Tezos virtual machine	It has a restricted type instructions. Michelson is not suitable to express contractual business business sementics because it has lack of vocabulary.

THE PAPER

Alex Norta ^a , Raimundas Matulevičius ^b , Benjamin Leiding ^c

- ^a Blockchain Technology Group, Tallinn University of Technology, 12618 Akadeemia tee 15A, Tallinn, Estonia
- ^b Institute of Computer Science, University of Tartu, Tartu, J. Liivi 2, 50409, Estonia
 ^c Institute of Computer Science, University of Göttingen, Göttingen, Goldschmidtstr. 7, 37077, Germany

Received 23 March 2018, Revised 15 April 2019, Accepted 24 May 2019, Available online

TALLINN UNIVERSITY OF TECHNOLOGY

Abstract

Designing government independent and secure identificationand authentication protocols is a challenging task. Design flaws and missing specifications as well as security- and privacy issues of such protocols pose considerable user risks. Formal methods, such as Colored Petri Nets (CPN), are utilised for the design, development and analysis of such new protocols in order to detect flaws and mitigate identified security risks before deployment. This paper fills the gap, by applying in a novel way a set of security risk-oriented patterns (SRP) to the so-called Authcoin protocol that we formalise using CPN. The initial formal model of Authcoin facilitates the detection and elimination of design flaws, missing specifications as well as security- and privacy issues. The additional risk- and threat analysis based on the Information Systems Security Risk Management (ISSRM) domain model we perform on the formal CPN models of the protocol. The identified risks are mitigated by applying SRPs to the formal model of the Authcoin protocol. SRPs are a means to mitigate common security- and privacy risks in a business-process context by applying thoroughly tested and proven best-practice solutions. The goal of this work is to test the utility of SRPs outside of the the usual application domain, to reduce the risks and vulnerabilities of the Authcoin protocol.

EARLIER PAPER WITH BASIC AUTHCOIN PROTOCOL

Mapping Requirements Specifications into a Formalized Blockchain-Enabled Authentication Protocol for Secured Personal Identity Assurance

Benjamin Leiding¹ and Alex Norta²

 ¹ University of Göttingen, Institute of Computer Science, Göttingen, Germany benjamin.leiding@cs.uni-goettingen.de
 ² Tallinn University of Technology, Department of Software Systems, Tallinn, Estonia alex.norta.phd@ieee.org Abstract. The design and development of novel security and authentication protocols is a challenging task. Design flaws, security and privacy issues as well as incomplete specifications pose risks for its users. Autheoin is a blockchain-based validation and authentication protocol for secure identity assurance. Formal methods, such as Colored Petri Nets (CPNs), are suitable to design, develop and analyze such new protocols in order to detect flaws and mitigate identified security risks. In this work, the Authcoin protocol is formalized using Colored Petri Nets resulting in a verifiable CPN model. An Agent-Oriented Modeling (AOM) methodology is used to create goal models and corresponding behavior models. Next, these models are used to derive the Authcoin CPN models. The modeling strategy as well as the required protocol semantics are explained in detail. Furthermore, we conduct a state-space analysis on the resulting CPN model and derive specific model properties. The result is a complete and correct formal specification that is used to guide future implementations of Authcoin.

Keywords: authcoin, colored petri net, authentication, security, trust, privacy, access control, identity, blockchain, smart contract, formal verification

AUTHCOIN: FORMAL PRESENTATION WITH COLORED PETRI NETS

 Exempla 	ry Authcoin behavioral interfac	es of activities	
Activity	Trigger	Precondition	Postcondition
Key generation and establish binding	User wants to create a new key pair	identifier list, expiration date, key type, key length	Key pair, EIR on blockchain EIR
V&R Processing	Received EIRs for V&A	Verifier EIR, target EIR	V&A results on blockchain or failure message
Mining	Received input for blockchain	Input transactions	CR, RR and SR on blockchain and VARs or failure message
Revocation	User wants to revoke an EIR or a SR	KeyPair, EIR, SR, CR,RR, VARs	Revoked EIR or SR and updated information on blockchain
 Acronym 	s, names, descriptions of toker	n colors	
Module	Token color	Description	Туре
Top Level	PublicKey	Public Key	(Key Finger print, Key, Expiration Date UTC, Key Type,Key Length)
Top Level	PrivateKey	Private Key	String
Top Level	ChallengeRecord	Contains all information of	(CR_ID,VAE_ID,Time stamp,
		a V&A challenge	Challengetype,Challenge, VerifierEIR_ID, Verification
Top Level	ResponseRecord	Contains all information	(RR_ID,VAE_ID, Timestamp,
-	•	regarding a V&A response	CorrespondCR_ID, Response)

STATE-SPACE ANALYSIS

- Partial state-space analysis per module by CPN tools algorithms
- Simulation by token game of entire Authcoin protocol

Module	Loops	Home markings	Dead markings	Dead transi-	Live tran- sitions
				tions	
Key Generation Es-	No	No	Yes	No	No
tablish Binding					
Formal Validation	No	No	Yes	Yes	No
Validation & Au-	No	No	Yes	Yes	No
thentication					
VAR Creation	No	No	Yes	No	No
Process VAR	No	No	Yes	Yes	No
Revocations	No	No	Yes	Yes	No

RISK 1 AND THREAT ANALYSIS FOR POSTING EIRS, CRS, RRS, SRS AND UPDATED VARS TO THE BLOCKCHAIN

		Risk 1	
		Man-in-the-middle (MITM) outside attacker	
		Motivation:	Undermine trustworthiness and reliability of the protocol
	Threat Agent	<u>Resources:</u>	Intercept information posted from genuine user to the blockchain
		Expertise:	Intercept and manipulate transmitted data records
	Attack Method	1	Outside attacker intercepts data records (EIR, CR, RR, SR, or VAR) that have been created and posted to the by a genuine user. blockchain or VAR) that have been created and posted to the blockchain
		2	Outside attacker manipulates data records.
		3	Outside attacker forwards manipulated data records to intended receiver (blockchain miners).
	Threat	Outside attacker manipulates data records.	
	Vulnerability	Data records transmitted during the process of posting information to the blockchain can be manipulated.	
	Event	Outside attacker manipulates transmitted data records and forwards the false records to be posted to the blockchain due to a lack of integrity checks of transmitted data records.	
	Impact	1	Data records with false information available on the blockchain.
TAL		2	Loss of integrity of transmitted data records.
ŤĒĊH	Risk	Outside attacker manipulates transmitted data records and forwards the false records to be posted to the blockchain due to a lack of integrity checks of transmitted data records.	

		Risk 2	
		MITM outside attacker	
		Motivation:	Undermine trustworthiness and reliability of the protocol
	Threat Agent	Resources:	Intercept user traffic
		Expertise:	Intercept and manipulate transmitted data records
	Attack Method	1	Outside attacker intercepts data records (EIR, CR, RJ SR, or VAR) that have been created and posted to the by a genuine user. blockchain or VAR) that have been created and posted to the blockchain
		2	Outside attacker manipulates data records.
		3	Outside attacker forwards manipulated data record to intended receiver (blockchain miners).
	Threat	Outside attacker manipulates data records.	
	Vulnerability	Data records transmitted during the process of posting information to the blockchain can be manipulated.	
	Event	Outside attacker manipulates transmitted data records and forwards the false records to be posted to the blockchain due to a lack of integrity checks of transmitted data records.	
	Impact	1	Data records with false information available on th blockchain.
		2	Loss of integrity of transmitted data records.
ГЕСН	Risk	Outside attacker manipulates transmitted data records and forwards the false records to be posted to the blockchain due to a lack of integrity	
		checks of transmitted data records	

	Risk 3	
	Outside attacker	
	Motivation:	Disrupt Authcoin services
Threat Agent	Resources:	DDoS network with sufficient power
	Expertise:	Running DDoS attacks
Attack Method	1	Outside attacker performs a DDoS attack on network infrastructures relevant for user communication - either for a specific local user or on a global scale.
	2	Users are no longer able to exchange data records (CR, RR) or access Authcoin information on the blockchain.
Threat	Outside attacker performs a DDoS attack on the network infrastructure.	
Vulnerability	Network infrastructure can be overloaded by an outside attacker.	
Event	Outside attacker is able to perform a DDoS attack on the network Infrastructure.	
	1	Pending V&As might time out.
Impact	2	Users are not able to perform any new or pending V&A procedures.
	3	No information lookup on the global blockchain.
	4	General unavailability of Authcoin services.
Risk	Outside attacker performs a DDoS attack on the	-
	local or global network infrastructure used by	
	Authcoin's users resulting in a general	
	unavailability of the service. Furthermore pending	
	V&As might time out and users cannot execute	
	any operation of the protocol anymore.	

TREATMENT O	FRISK	
	Risk 1 & 2	Risk 3
Risk treatment Security requirement Controls	Risk reduction Integrity checks of submitted records Signed hashes	Risk reduction Mitigate service disruption Decentralization, load distribution and balancing
Identifying security flaFurther ris) these risks and mitigations does not gua aws in the protocol exist. k-analysis method & penetration testing r	rantee other risks and nay show further risks.
 Examples User m Underl¹ Blockcl 	of further risks nobile devices ying communication networks hain systems used	
TAL TECH	NIVERSITY OF TECHNOLOGY	

I

	SRP1: secures data from unauthorized access – Does not correspond to any identified risk – Not considered to be implemented
•	 SRP2: ensures secure data transmission between business entities Suitable to mitigate issued of Risk 1 & Risk 2 Make data unreadable before transmission & hash checksums for outside-attack prevention
	SRP3: ensures secure business activity after data submission – Does not correspond to any identified risk – CPN modeling realizes this pattern
	 SRP4: secures business services against distributed denial of service (DDoS) attacks Authcoin is highly distributed service for DDoS protection Partial DDoS attack against single service possible
	SRP5: secures storage of data and data retrieval from storage – Does not correspond to any identified risk – Not considered to be implemented
	TALLINN UNIVERSITY OF TECHNOLOGY

UPDATED	BEHAVIOR-INTERFACE MODEL (2)	1)
---------	-------------------------------------	----

	Subgoal	Activity	Trigger	Precondition	Postcondition
-	Formal validation	Check key well formed	Started formal validation	VAE-ID, EIR	Key well formed result, public key, revocation information
		Integrity check	Key is well formed	VAE-ID, EIR	VAE-ID, result of integrity check based on hash sum
	Validation and authentication	Create and send responses	Received incoming CR VAE-ID, verifier and target CR as well as EIRs	VAE-ID, target and verifier RRs as well as EIRs or failure message	
	Create and send challenge to verifier	Received challenge from verifier VAE-ID, verifier EIR, target EIR, incoming CR Verifier and target CRs as well as EIRs, or failure message Create and post signatures	Received incoming RRs, CRs and RR posted to blockchain	VAE-ID, verifier and target RRs, verifier and target EIRs	SRs available on blockchain, validation and authentication finished
	Create and send challenge to verifier	Create challenge for verifier	Target received challenge from verifier	VAE-ID, target CR, verifier and target EIR	VAE-ID, verifier CR, target challenge, verifier and target EIR
TAL	Check integrity	Original verifier receives CR from target	VAE-ID, verifier CR, target CR, verifier and target EIR	VAE-ID, verifier CR, target challenge, verifier and target EIR	
TECH	Create signatures from RR	Create Signature	Received a RR	VAE-ID, RR, signature lifespan, response evaluation, verifier and target EIRs	VAE-ID, SR

	Subgoal	Activity	Trigger	Precondition	Postcondition
		Check integrity	Received CR from verifier	VAE-ID, CR for target, verifier EIR	VAE-ID, target CR, verifier EIR
		Extract EIR-ID	CR passed integrity check	VAE-ID, CR for target, verifier EIR	VAE-ID, target CR, verifier EIR-ID, verifie EIR
	Create challenge for verifier	Process incoming CR	Extracted verifier EIR-ID	VAE-ID, verifier EIR, verifier EIR-ID	VAE-ID, Verifier EIR
		Create challenge for verifier	Processed incoming CR	VAE-ID, verifier and target EIRs, challenge for verifier	VAE-ID, CR for verifier, verifier and target EIRs
		Create response	Verifier and target CRs received	VAE-ID, verifier and target CRs as well as EIRs	VAE-ID and RR and EIR or failure message
	Create and send response	Send response	Created response for CR	VAE-ID,RR	VAE-ID,RR
		Check integrity	User receives a RR	VAE-ID, RR, verifier and target EIR	VAE-ID,RR, verifier and target EIR or failure message
	Create response	Evaluate challenge	Extracted challenge from CR	VAE-ID, CR, challenge, challenge evaluation, verifier and target EIRs	VAE-ID, CR and evaluation result, verifier and target EIRs or failure message
AL ECH		Create response	User fulfilled challenge	VAE-ID, CR, fulfilled challenge, verifier and target EIRs	VAE-ID, RR, verifier and target EIRs
	Create and post	Create signature from	Received RRs	VAE-ID, RRs, verifier and	SRs available on
	signature	RR		target EIRs	blockchain

UPDATED PROTOCOL SEMANTICS

Token color	Description	Туре
EntityIdentityRecord	Contains all relevant information about an entity	EIR_ID, Timestamp, PublicKey, Identifiers, Revoked, hashEIR, EIRsig
ChallengeRecord	Contains all information about a V&A challenge	CR_ID, VAE_ID, Timestamp, ChallengeType, Challenge, VerifierEIR_ID, VerificationTargetEIR_ID, hashCR, CR sig
ResponseRecord	Contains all information regarding a V&A response	RR_ID, VAE_ID, Timestamp, CorrespondCR_ID, Response, hashRR, RRsig, RR receiver, RRSender
SignatureRecord	Contains all information regarding a V&A signature	SR_ID, VAE_ID, Timestamp, ResponseRR ID, ExpirationDate, Revoked, SuccessfulVA, hashSR, SR sig
VAR	Validation and authentication request	VAR_ID, CreationDate, LastUpdated, VerifierEIR_ID, TargetEIR_ID, Status, VAE_ID, hashVAR, VARsig

TAL TECH

UPDATED OF CPN MODULES WITH DETAILED DESCRIPTION CPN-Module name Update description KeyGenerationEstablishBinding Added a hash calculation for created EIRs FormalValidation Added a hash-based IntegrityCheck and updated affected transitions accordingly V&A Added a new place VT_EIRs to accommodate EIRs required to create and verify signatures on data records CreateSendChallengeToVerifier Added a hash-based IntegrityCheck and updated connecting arcs accordingly CreateSendResponses Added a hash-based IntegrityCheck and updated connecting arcs accordingly CreateSignatures Added a new place VTSR_EIRs to accommodate EIRs required to create and verify signatures on data records CreateChallengeForTarget Added a hash calculation for created CRs CreateChallengeForVerifier Added a hash-based IntegrityCheck for incoming CRS and updated connecting arcs accordingly CreateResponse Added a hash calculation for created RRs CreateSignaturesFromR Added calculation of a hash-based checksum for each created SR VARCreation Added a hash calculation for created VARs ProcessVAR Added a hash calculation for created VARs FinishVAR Added a hash calculation for created VARs Added calculation of a hash-based checksum for updated and revoked EIRs EIRRevocation SignatureRevocation Added calculation of a hash-based checksum for updated and revoked SRs TALLINN UNIVERSITY OF TECHNOLOGY

EVALUATION	OF UPDATED	CMP MODEL	WITH SRP	PATTERNS

 Second state space is the same as for the first state space 									
Module	Loops	Home markings	Dead markings	Dead transition	Live tr	ansition			
Key Generation Establish Binding	No	No	Yes*	No	No				
Formal Validation	No	No	Yes*	Yes*	No				
Validation & Authentication	No	No	Yes*	Yes*	No				
VAR Creation	No	No	Yes*	No	No				
Process VAR	No	No	Yes*	Yes*	No				
Revocations	No	No	Yes*	Yes*	No				
Module Key Generation Establish Binding		Nodes* 466	Arcs*	Nodes** 466		Arcs** 772			
Formal Validation		708	2523	2877		13,588			
Validation & Authentication		308	601	372		830			
VAR Creation		355	911	373		971			
Process VAR		2502	6288	6067		21,884			
Revocations		13	12	13		12			
TAL TALLINN UNIVERSITY OF TECHNOLOGY									

CONCLUSION

- Blockchains have massive socio-technical implications
 - Abolishment of qualitative, human-driven governance
 - Replacement with quantitative, mathematics-rooted e-governance
- Blockchain technology solves several problems
 - Byzantine general's problem solved
 - Double-spend problem solved
 - Triple-entry ledger management possible
- Smart contracts are currently neither contracts, nor smart
- We secure a government-independent identity-authentication protocol
 - Blockchain-based, currently in implementation with Qtum.org
 - Security risk-oriented pattern application for securing protocol
 - We show patterns are partially applicable onto CPN models
 - Updated goal models and CPN models as consequence

TAL TALLINN UNIVERSITY OF TECHNOLOGY

FUTURE WORK

- Automatic detection of security risk-oriented patterns
- Properly specify security risk-oriented patterns
- Implement Authcoin with different smart-contract systems

 Currently we try Qtum.org
- Authcoin application in diverse cases
 - E-governance
 - B2B Dapps
 - Cyberphysical systems
 Automobile industry
 - Automobile
 - Etc.

